Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir?

Momentum Nedir?

Momentum Nedir?, Momentum Nerededir?, Momentum Hakkında Bilgi?, Momentum Analizi? Momentum ilgili Momentum ile ilgili bilgileri sitemizde bulabilirsiniz.  Momentum ile ilgili daha detaylı bilgi almak ve iletişime geçmek için sayfamıza tıklayabilirsiniz. Momentum Ne Anlama Gelir Momentum Anlamı Momentum Nedir Momentum Ne Anlam Taşır Momentum Neye İşarettir Momentum Tabiri Momentum Yorumu 

Momentum Kelimesi

Lütfen Momentum Kelimesi İle ilgili Daha Fazla Bilgi Almak İçin Kategoriler Sayfamıza Bakınız. Momentum İlgili Sözlük Kelimeler Listesi Momentum Kelimesinin Anlamı? Momentum Ne Demek? ,Momentum Ne Demektir? Momentum Ne Demektir? Momentum Analizi? , Momentum Anlamı Nedir?,Momentum Ne Demektir? , Momentum Açıklaması Nedir? ,Momentum Cevabı Nedir?,Momentum Kelimesinin Anlamı?,Momentum Kelimesinin Anlamı Nedir? ,Momentum Kelimesinin Anlamı Ne demek?,Momentum Kelimesinin Anlamı Ne demektir?

Momentum Bu Kelimeyi Kediniz Aradınız Ve Bulamadınız

Momentum Kelimesinin Anlamı Nedir? Momentum Kelimesinin Anlamı Ne demek? , Momentum Kelimesinin Anlamı Ne demektir?

Demek Ne Demek, Nedir? Tdk'ye Göre Anlamı

Demek kelimesi, dilimizde oldukça kullanılan kelimelerden birisidir. TDK'ye göre, demek kelimesi anlamı şu şekildedir:

Söylemek, söz söylemek -  Ad vermek -  Bir dilde karşılığı olmak -  Herhangi bir ses çıkarmak -  Herhangi bir kanıya, yargıya varmak -  Düşünmek - Oranlamak  - Ummak, - Erişmek -  Bir işe kalkışmak, yeltenmek -  Saymak, kabul etmek -  bir şey anlamına gelmek -  öyle mi,  - yani, anlaşılan -  inanılmayan, beklenmeyen durumlarda kullanılan pekiştirme veya şaşma sözü

Momentum Bu Kelimeyi Kediniz Aradınız Ve Bulamadığınız İçin Boş Safyadır

Demek Kelimesi Cümle İçerisinde Kullanımı

Eskilerin dediği gibi beşer, şaşar. -  Muşmulaya döngel de derler.

Kamer `ay` demektir. -  Küt dedi, düştü. -  Bu işe herkes ne der? -  Güzellik desen onda, zenginlik desen onda. -  Bundan sonra gelir mi dersin? -  Saat yedi dedi mi uyanırım. - Kımıldanayım deme, kurşunu yersin. Ağzını açayım deme, çok fena olursun. - Yarım milyon dediğin nedir? - Okuryazar olmak adam olmak demek değildir. -  Vay! Beni kovuyorsun demek, pekâlâ! Momentum - Demek gideceksin.

Demek Kelimesi Kullanılan Atasözü Ve Deyimler

- dediği çıkmak - dediğinden (dışarı) çıkmak - dediğine gelmek

 - dedi mi - deme! - demediğini bırakmamak (veya koymamak) - deme gitsin  - demek istemek , - demek ki (veya demek oluyor ki) , - demek olmak , - dememek - der oğlu der - deyip de geçmemek - diyecek yok - dediği çıkmak , {buraya- - dediğinden (dışarı) çıkmak - dediğine gelmek i, - dedi mi , {buraya- - deme! - demediğini bırakmamak (veya koymamak) - deme gitsin , - demek istemek - demek ki (veya demek oluyor ki) - demek olmak - dememek - der oğlu der - deyip de geçmemek - diyecek yok

Momentum

Momentum Nedir? Momentum Ne demek? , Momentum Kelimesi İle ilgili Daha Fazla Bilgi , Almak İçin Kategoriler Sayfamıza Bakınız. İlgili Sözlük Kelimeler Listesi

Momentum Kelimesinin Anlamı? Momentum Ne Demek? Momentum Ne Demektir? ,Momentum Analizi? Momentum Anlamı Nedir? Momentum Ne Demektir?, Momentum Açıklaması Nedir? , Momentum Cevabı Nedir? , Momentum Kelimesinin Anlamı?






Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir?

Momentum

Vikipedi, özgür ansiklopedi

Klasik mekanikte momentum ya da devinirlik[1] (çoğul momenta; SI birimi kg·m/s ya da eşdeğer olarak, N·s), bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir (çizgisel momentumun korunumu); yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

Her ne kadar Newton'un ikinci yasası şeklinde ifade edilse de, momentumun korunumu Özel görelilik teorisi çerçevesi içinde de geçerlidir ve bazı uygun tanımlarla birlikte, (genelleştirilmiş) bir momentum korunum yasası Elektrodinamik, kuantum mekaniği, kuantum alan teorisi ve genel görelilik teorileri içinde de geçerliliğini korur. Göreli mekanikteki momentum, göreli-olmayan momentumun, fazladan Lorentz faktörü ile çarpılmasıyla elde edilir.

Bir parçacığın çizgisel momentumu[değiştir | kaynağı değiştir]

Einstein'ın asansöründeki Newton'un elması . A kişisinin gözlem çerçevesinde, elma sıfır olmayan bir hıza ve momentuma sahiptir. Asansörün ve B kişisinin gözlem çerçevesinde ise, elma, sıfır bir hıza ve momentuma sahiptir.

Bir nesne herhangi bir gözlem çerçevesinde hareket halinde ise, o çerçeve içinde bir momentuma sahiptir. Momentumun çerçeveye bağımlı olduğunu belirtmek önemlidir. Yani aynı nesne, bir gözlem çerçevesinde belli bir momentum değerine sahip olabilirken, başka bir gözlem çerçevesinde ise başka bir momentum değerine sahip olabilir. Örneğin, hareketli bir nesne, yere göre sabit bir noktaya göre seçilen bir gözlem çerçevesinde momentumu olmasına rağmen, kütle merkezine iliştirilen bir gözlem çerçevesinde ise sıfır momentumu vardır.

Bir nesnenin sahip olduğu momentumun miktarı, iki fiziksel büyüklüğe bağlıdır: Kütlesi ve o gözlem çerçevesindeki hızı. Fizikte, momentum için kullanılan sembol genellikle kalın p harfidir (kalın yazılmasının nedeni vektör olmasındandır.); böylece şöyle ifade edilebilir;

burada p momentum, m kütle ve v hızdır.

Örnek: kuzeye doğru yere paralel düz bir rotada 1 m/s hızına ve 1 kg kütleye sahip model bir uçağın momentumu yere göre ölçüldüğünde, kuzey yönünde 1 kg•m/s ‘dir. Kokpitin içindeki bir pilot, kokpit gözlem çerçevesine göre uçağın hızını sıfır ölçeceğinden, momentumunu da sıfır ölçer.

Newton’un ikinci yasasına göre, bir parçacığın momentumunun değişim hızı, parçacık üzerine etki eden net kuvvetle doğru orantılıdır ve yönü ise bu net kuvvetin yönündedir. Net kuvvetin, momentumdan türetilmesi aşağıdaki gibidir.

Eğer kütle zaman içinde sabitse, türevin ikinci terimi (thrust terimi denir) (). Böylece şunu yazabiliriz:

Ya da daha basit olarak,

burada F’nin net kuvvet olduğu anlaşılmalıdır.

Örnek: yine bir model uçak, 1 kg kütleli, 1 s içinde kuzeye doğru sıfır hızdan 1 m/s hızına ivmelensin. Bu ivmelenme için gerekli kuvvet 1 newtondur. Momentumdaki değişim 1 kg•m/s’dir. Kokpitteki pilot için ise momentumda bir değişim yoktur. İvmelenme sırasında pilotun sırtının koltuğa yapışması, bu itme'ye tepki kuvvetine karşı dengelenmedir.

Birçok-parçacık sisteminin çizgisel momentumu[değiştir | kaynağı değiştir]

Kütle ve hız bağıntıları[değiştir | kaynağı değiştir]

Çok-parçacık sisteminin çizgisel momentumu, sistem içindeki ayrı ayrı tüm nesnelerin momentumlarının vektörel toplamlarına eşittir.

burada p parçacık sisteminin toplam momentumu, mi vevi i’inci nesnenin sırasıyla kütlesi ve hızı, ve n ise sistemdeki nesnelerin sayısıdır..

Gösterilebilir ki, kütle merkezi çerçevesinde herhangi bir sistemin momentumu sıfırdır. Dahası, bu kütle merkezi çerçevesine göre hızı vkm olan başka bir çerçevedeki momentum basitçe aşağıdaki gibidir:

burada:

Bu Euler'in ilk yasası olarak bilinir.[2][3]

Kuvvet bağıntısı – Genel hareket denklemleri[değiştir | kaynağı değiştir]

Maddesel bir gövdenin hareketi

Birçok-parçacıklı sistemin çizgisel momentumu, toplam kütle m ile kütle merkezi hızı vkm’nin çarpımı olarak da tanımlanabilir.

Bu Newton'un ikinci yasasının özel bir halidir (eğer kütle sabitse).

Tensörler kullanılarak yapılacak daha genel bir türetim için, bir t anında, V hacmini kaplayan, bir S yüzey alanına sahip, stres vektörü ile temsil edilen birim yüzey alanı başına yüzey kuvvetinin ettiği, V hacmi içinde her noktadaki birim hacim başına olan Fi gövde kuvvetinin etkidiği, cismin gövdesi boyunca belirlenmiş vi hız alanı ile belirlenmiş, sürekli bir ortam olduğu varsayılan, hareket halindeki bir cismi düşünelim(şekle bakın).

Tanım gereği stres vektörü ’dir, o halde

Gauss'un diverjans teoremini kullanarak, yüzey integrali hacim integraline çevrilirse, (burada ile diferansiyel işlemci belirtilmektedir), bu bize şunu verir:

Artık sadece bu eşitliğin sağ tarafıyla ilgilenebiliriz. Bu noktada dikkat etmemiz gereken, diferansiyel işlemciyi sadece integranda uygulamamaktır. Çünkü bu sürekli ortama sahip gövdenin hareketi esnasında, gövde katı bir cisim olmak zorunda olmadığından, integre ettiğimiz hacim de zaman içinde değişebilir. O halde yukarıdaki integral şu hali alır:

Birinci kısımda türev alınır ve ikinci kısma diverjans teoremi uygulanırsa:

elde edilir.

Artık integralin içindeki ikinci terim şudur: Bunu önceki denklemde yerine koyup, terimleri düzenledikten sonra, şunu elde ederiz:

Yukarıdaki denklemlerdeki iki integral terimini kolayca tanıyabiliriz. İlk integral hız alanının konvektif türevini ve ikinci integral ise kütlenin zaman içindeki akışını ve değişimini ihtiva eder. Şimdi ise sistemde ne bir kaynak (source) ne de bir gider (sink) olduğunu varsayalım, yani kütle korunuyor olsun, o halde bu ikinci terim sıfırdır. Böylece şunu elde ederiz:

Bunu orijinal denkleme geri koyarsak:

Herhangi bir hacim için integrand sıfır olması gerektiğinden, Cauchy hareket denklemlerini elde ederiz

Görüldüğü gibi bunu elde etmek için sadece hiçbir kütle kaynağı veya kütle giderinin olmadığını, yani kütlenin korunduğu varsayımını yaptık. O halde bu denklem herhangi bir sürekli sistem için, akışkan sistemlerde dahi geçerlidir. Eğer yalnızca elastic sürekliliği inceliyorsak, konvektif türevin ikinci terimi ihmal edilebilir ve bu durumda bize hız alanının sıradan zaman türevi kalır. Bir sistem dengede ise, ivmesi olmayacağından, momentumunun zamana göre değişimi sıfırdır.

Ya da tensör gösterimiyle,

Bunlar, çizgisel elastisite problemlerini çözmek için katılar mekaniğinde kullanılan denge denklemleridir. Mühendislik gösteriminde, denge denklemleri kartezyen koordinatlarda şöyle ifade edilirler:

Çizgisel momentumun korunumu[değiştir | kaynağı değiştir]

Çizgisel momentumun korunumu yasası doğanın temel bir yasası olup, eğer kapalı bir sisteme etkiyen hiçbir dış kuvvet mevcut değilse, o kapalı sistemin momentumunun sabit kalacağını söyler. Bu yasanın sonuçlarından bir tanesi ise; herhangi bir nesneler sisteminin kütle merkezi, sistem dışı bir kuvvete maruz kalmadığı sürece, her zaman aynı bir hız ile hareketini sürdürecektir.

Momentumun korunumu, matematiksel bir özellik olan uzayın homojen olmasının bir sonucudur (bir nesnenin uzay içindeki konumu, momentumuna kanonik olarak eşleniktir). O halde momentumun korunduğu bir sistemin içinde fiziksel olarak ne olup bittiği, o sistemin uzaydaki konumunun nerede olduğu ile bir ilgisi bulunmamaktadır.

Analitik mekanikte momentumun korunumu, Lagranjiyenin, ötelemeler altında değişmez kalmasının bir sonucudur. Toplam momentumun hareket sabiti olduğu, Lagranjiyene sonsuz küçük bir öteleme yapılıp, bunu ötelenmemiş Lagranjiyenle eşitlenerek ispatlanabilir. Bu Noether teoreminin özel bir halidir.[4]

Kapalı bir sistem için (eğer dış kuvvetler yoksa) toplam momentumun korunumu aslında, Newton'un birinci hareket yasasıdır. Newton'un üçüncü yasası olan, alt sistemler arasında etkiyen kuvvetlerin büyüklükleri aynı ve yönleri zıttır şeklinde ifade edilen, etkiye tepki yasası ise momentum korunumunun bir sonucudur.

Uzaydaki konum, vektörel bir nicelik olduğundan, konuma kanonik eşlenik olan momentum da vektörel bir niceliktir-bir yöne sahiptir. O halde, bir silah ateşlendiğinde, sistemin (silah ve merminin) toplam momentumu, bu iki cismin momentumlarının vektörel toplamlarıdır. Ateşlemeden hemen öncesinde silah ve merminin duruyor oldukları farzedilirse (ki bu sistemin başlangıç momentumunun sıfır olmasıdır), sistemin son toplam momentumu da sıfır olmalıdır. Sadece iki nesneye sahip kapalı bir sistemde, nesnelerden birindeki momentum değişimi, diğerinkine büyüklük olarak eşit ve yön olarak ters olmalıdır. Matematiksel olarak,

Momentum, yine kapalı bir sistemde, çarpışmalarda ve iç patlamaların sebep verdiği ayrılmalarda dahi korunur. Kinetik enerji, öte yandan, çarpışmalar esnek değilse, korunmaz. Momentum korunduğundan dolayı, bu bir çarpışma ya da ayrılmayı takip eden durumda bilinmeyen bir hızı, eğer diğer kütle ve hızların bilinmesi durumunda, hesap edilebilir.

Bu gerçeğin gerekli olduğu, fizikte sık rastlanan bir problem, iki parçacığın çarpışmalarıdır. Momentum her zaman korunuyor olacağından, çarpışma öncesi momenta toplamı, çarpışma sonrası momenta toplamına eşit olmalıdır:

Burada; "" ve "": Çarpışma öncesi hızlar, biriminde. "" ve "": Çarpışma sonrası hızlar, biriminde. "": Kütle, biriminde.

İlk hızlardan, son hızların belirlenmesi (ya da tam tersi), çarpışmanın çeşidine bağlıdır. İki çeşit momentum koruyan çarpışma vardır: Kinetik enerjiyi de koruyan esnek çarpışmalar ve kinetik enerjiyi korumayan esnek olmayan çarpışmalar.

Esnek çarpışmalar[değiştir | kaynağı değiştir]

İki bilardo topunun çarpışması, sertliklerinin yüksek olmasından dolayı, “neredeyse” tamamen esnek bir çarpışmaya örnek olarak verilebilir. Tamamen esnek olan çarpışmalar sadece teoride, sertlikleri matematiksel olarak sonsuz olan iki cisim arasında var olabilir. İki topun çarpışması esnasında momentumun korunmasının yanı sıra, çarpışma öncesi kinetik enerjilerin toplamı, çarpışma sonraki toplama eşit olmalıdır:

Bir boyutta[değiştir | kaynağı değiştir]

Bir Newton beşiği , momentum korunumunu gösteriyor.

Başlangıç hızları bilindiğinde, kafa-kafaya olan çarpışmalardaki son hızlar şöyle verilir:

Birinci cismin kütlesinin diğerinkinden çok daha fazla olduğu durumda (yani, m1 » m2), son hızlar yaklaşık olarak şöyledir:

O halde daha fazla kütleli cisim hızını değiştirmez, ve daha az kütleli cisim, diğerinin hızının iki katı kadar daha hızlı ve kendi orijinal hızı kadar daha yavaş hareket eder.

Eşit kütleli iki cismin kafa-kafaya çarpışmasında (yani, m1 = m2), son hızlar şöyle verilir

Yani hızlar basitçe değiş tokuş edilirler. Eğer birinci cisim sıfır olmayan u1 ilk hızına sahip olup ikincisi ise duruyorsa, çarpışmadan sonra birinci cisim duruyor olup, ikincisi u1 son hızı ile hareketine devam edecektir. Bu fenomenin temsili Newton beşiği ile gösterilebilir.

ÖRNEK: İlk hızları ve kütleleri: m1=1000kg, u1=5m/s, m²=0.1kg, u2=0m/s. Son hızları yaklaşık olarak verilmiştir: v1=4.999m/s, v2=9.999m/s

Merkezi esnek çarpışmalarda hareket doğrultusunda bir değişme olmaz. Bu çarpışmalarda kinetik enerji ve momentum korunur. Aşağıdaki iki formül merkezi esnek çarpışma problemlerinde kullanılır:

Çoklu boyutlarda[değiştir | kaynağı değiştir]

Birden daha üst boyutlardaki, kafa-kafaya olmayan çarpışmalardaki gibi çarpışmalarda, hız vektörü, çarpışma düzlemine dik ve çarpışma düzlemine paralel olmak üzere, iki ortogonal bileşenine ayrılır. Çarpışma düzlemine dik hız bileşenleri değişmeden kalırken, çarpışma düzlemindeki hız, bir boyutlu durumdaki gibi hesaplanabilir. Örneğin, iki-boyutlu bir çarpışmada, momenta x ve y bileşenlerine ayrıştırılabilir. Bundan sonra her bileşeni ayrı ayrı hesaplayıp, sonuçları vektörel olarak birleştirip hesaplayabiliriz. Bu vektörün büyüklüğü, kapalı sistemin son momentumudur.

Mükemmel, esnek-olmayan çarpışma[değiştir | kaynağı değiştir]

Mükemmel esnek-olmayan çarpışmaya verilen ortak bir örnek, iki kartopunun çarpışıp, akabinde birbirlerine yapışmalarıdır. Bu durumda momentumun korunumu denklemi şöyledir:

Mükemmel, esnek-olmayan çarpışmalar, gösterilebilir ki, kinetik enerjinin maksimum oranda diğer enerji biçimlerine dönüştüğü çarpışmalardır. Örneğin, eğer çarpışmadan sonra iki cisim yapışıp, ortak bir son hız ile hareket ediyorlarsa, daima, nesnelerin hızlarının sıfır olduğu ve böylece kinetik enerjilerinin %1,0’ünün dönüştürüldüğü bir gözlem çerçevesi bulunabilir. Bu göreli durumda dahi doğru olup, parçacık hızlandırıcılarında, kinetik enerjiyi etkin bir biçimde, kütle-enerjinin değişik formlarına çevirmek için,(yani kütleli parçacıklar elde etmek için), kullanılır.

Tazmin katsayısı[değiştir | kaynağı değiştir]

Tazmin(restitution) katsayısı, göreli uzaklaşma hızının, göreli yaklaşma hızına oranı olarak tanımlanır. Bir oran olduğundan, boyutsuz bir niceliktir. Tazmin katsayısı, iki çarpışan nesne için, şöyle verilir:

burada

v1 çarpışmadan sonra, birinci nesnenin son skaler hızı
v2 çarpışmadan sonra, ikinci nesnenin son skaler hızı
u1 çarpışmadan önce, birinci nesnenin ilk skaler hızı
u2 .çarpışmadan önce, ikinci nesnenin ilk skaler hızı.

Mükemmel bir esnek çarpışma, CR ‘nin 1 olduğunu ima eder. Böylece mükemmel esnek çarpışmada, çarpışan cisimlerin göreli yaklaşma ve göreli uzaklaşma hızları eşittir.

Esnek-olmayan çarpışmalar, (CR < 1) eşitsizliğine sahiptirler. Mükemmel bir esnek-olmayan çarpışma durumunda, çarpışan cisimlerin kütle merkezlerine göre hızları sıfırdır. Böylece cisimler, çarpışmadan sonra birbirlerine yapışırlar.

Patlamalar[değiştir | kaynağı değiştir]

Patlamalar, bir zincirleme reaksiyon sonucunda, potansiyel enerjinin kinetik enerjiye dönüşmesiyle çevrede bulunan materyallerin yer değiştirmesi şeklinde oluşurlar. Patlamalar potansiyel enerjiyi korumaz. Bunun yerine kimyasal, mekanik ya da nükleer biçimlerinde bulunan potansiyel enerjiyi, kinetik enerji, akustik enerji ve elektromagnetik ışınım biçimlerine çevirir.

Momentumun çağdaş tanımları[değiştir | kaynağı değiştir]

Göreli mekanikte momentum[değiştir | kaynağı değiştir]

Göreli mekanikte, korunabilmesi için, momentum şöyle tanımlanmalıdır

burada m0 cismin değişmez kütle si ve ϒ

İle verilen Lorentz çarpanıdır. burada v cismin hızı ve c ışık hızıdır. Tersine bağıntı şöyle verilir:[5]

Burada momentumun büyüklüğüdür..

Göreli momentum, değişmez kütle ile cismin has hızının çarpımı olarak da verilir. Cismin has hızı, cismin, gözlemcinin kendi gözlem çerçevesinde ölçtüğü konumunun, cismin kendi üzerinden geçen zamana göre(yani cismin has zamanına göre) olan değişim hızıdır. Klasik mekaniğin geçerli olduğu bölgede, göreli momentum, Newtonsal momentuma yakınsar: düşük hızlarda, γm0v, yaklaşık olarak m0v Newtonsal momentum ifadesine eşittir.

E göreli enerjisi, m0 kütlesi, p göreli momentumu, ve m = γm0 göreli kütlesinin, grafiksel bir temsili.

Bir cismin toplam E enerjisi, göreli momentumu ile şöyle ilintilidir

burada p, p’nin büyüklüğüdür. Bu göreli enerji-momentum bağıntısı, foton gibi kütlesiz parçacıklar için bile geçerlidir; m0 = 0 seçilirse

olur. Hem kütleli hem de kütlesiz parçacıklar için de, göreli momentum, de Broglie dalgaboyu λ’ya şöyle bağlıdır.

burada h, Planck sabitidir.

Dörtlü vektör formülasyonu[değiştir | kaynağı değiştir]

Göreli dörtlü momentum, dörtlü vektörlerin Lorentz ötelemeleri altında değişmez kalmalarından dolayı, Albert Einstein tarafından önerilmiş tir. Dörtlü-momentum P şöyle tanımlanır:

burada E = γm0c2,sistemin toplam göreli enerjisi, ve px, py, ve pz sırasıyla göreli momentumun x-, y-, ve z bileşenlerini temsil eder.

Momentum dörtlü vektörünün büyüklüğü || P ||, m0c’ye eşittir, çünkü

dir ve her gözlem çerçevesi için değişmezdir. Kapalı bir sistemde, toplam dörtlü momentum korunur ki bu en nihayetinde hem enerjinin hem de momentumun korunumunu birleştirip, bir tek denkleme indirgemiş olur. Örneğin, in the radiationless collision of two particles with rest masses ve kütleli, ve ilk hızlarına sahip göreli iki parçacığın ışımasız çarpışmalarındaki, ve son hızları, dörtlü momentumun korunumundan aşağıdaki gibi bulunabilir

burada

Esnek çarpışmalarda, durgun kütle değişmez iken ( and ), esnek olmayan çarpışmalarda durgun kütlelerde değişiklik olur. Dörtlü momentumun korunumunun, uzay-zamanın homojen olmasının bir sonucu olduğu ispatlanabilir.

Genelleştirilmiş momentum[değiştir | kaynağı değiştir]

Momentum, öteleme invaryansının Noether yüküdür. Öyle ki, sadece parçacıklar değil, alanlar ve diğer her şey momentuma sahip olabilir. Ancak uzay-zamanın eğri olduğu yerlerde, öteleme invaryansı için hiçbir Noether yükü yoktur.

Kuantum mekaniğinde momentum[değiştir | kaynağı değiştir]

Kuantum mekaniğinde, momentum, dalga fonksiyonu üzerine etkiyen bir işlemci olarak tanımlanır. Heisenberg belirsizlik ilkesi, bir sistemin aynı anda hem konumunu hem de momentumunu ne kadar hassas olarak belirleyebileceğimizin sınırların tanımlar. Kuantum mekaniğinde, konum ve momentum, eşlenik değişkenlerdir.

Konum tabanında tasvir edilen bir parçacığın momentum işlemcisi şöyledir;

burada gradyen işlemcisi, ħ indirgenmiş Planck sabiti, ve i sanal birimdir. Bu momentum işlemcisinin çokça kullanılan şeklidir, ancak değişik başka tabanlarda değişik biçimler alabilir. Örneğin momentum tabanında, momentum işlemcisi şöyle temsil edilir

burada ψ(p) dalga fonksiyonuna etkiyen işlemci p, dalga fonksiyonu kere p değeri sonucunu verir. Bu aynı konum işlemcisinin dalga fonksiyonuna etkidikten sonra, konum değeri x çarpı dalga fonksiyonunu vermesi gibidir.

Elektromagnetizmada momentum[değiştir | kaynağı değiştir]

Elektrik ve magnetik alanlar, durağan ya da zaman içinde değişip değişmediklerine bakılmaksızın, momentum taşırlar. Bir metal küre, silindirsel kapasitör veya mıknatıs bir çubuğun üzerindeki elektrostatik(magnetostatik) alanın P basıncı aşağıdaki gibidir.

burada , , , Sırasıyla elektromagnetik enerji yoğunluğu, elektrik alanı, ve magnetik alandır. elektromagnetik basınç, , kapasitörü patlatacak kadar güçlü olabilir. O halde elektrik ve magnetik alanlar da momentum taşırlar.

Işık (görülür, UV, radyo) elektromagnetik bir dalgadır ve böylece momentuma sahiptir. Fotonun kütlesi olmamasına rağmen yine de momentum taşır. Bu özellik güneş yelkeni gibi uygulamalara zemin hazırlar. Dielektrik ortamdaki ışığın momentumunun hesaplanması tartışmalıdır(Bkz Abraham–Minkowski controversy [1]3 Ocak 2012 tarihinde Wayback Machine sitesinde arşivlendi.).) Momentum, elektrodinamik bir sistemde korunur(alandaki momentumdan, hareket eden bölümlerin mekanik momentumuna dönüşebilir). Bir alanın momentumunun hesabı, genellikle enerji-momentum tensörü ve belli bir hacim üzerinden integre edilmiş Poynting vektörünün zaman içindeki değişimleri dikkate alınarak yapılır. Bu ise bileşenleri enerji yoğunluğu ve momentum yoğunluğu olan bir tensör alanıdır. Elektromagnetik etkileşmeler söz konusu olduğunda, kanonik momentuma karşılık gelen kuantum mekaniksel momentum işlemcisi

Yerine,

,

ile ifade edilir. Burada:

elektromagnetik vektör potansiyeli
yüklü parçacığın kütlesi
hızı
yüküdür.

Açısal momentum[değiştir | kaynağı değiştir]

Açısal momentum çember şeklinde bir düzlemde dönen bir cismin sahip olduğu bir özelliktir. Momentum gibi sabittir:

r : Parçacığın seçilen orijin noktasına göre uzaklık vektörü

p : Parçacığın momentumu

Kaynakça[değiştir | kaynağı değiştir]

  • David Halliday, David (1960-2007). Fundamentals of Physics. John Wiley & Sons. Chapter 9. 
  • Serway, Raymond; Jewett, John (2003). Physics for Scientists and Engineers (6 ed.). Brooks Cole. ISBN 0-534-40842-7
  • Stenger, Victor J. (2000). Timeless Reality: Symmetry, Simplicity, and Multiple Universes. Prometheus Books. Chpt. 12 in particular.
  • Tipler, Paul (1998). Physics for Scientists and Engineers: Vol. 1: Mechanics, Oscillations and Waves, Thermodynamics (4th ed.). W. H. Freeman. ISBN 1-57259-492-6
  • Hand, Louis N.; Finch, Janet D. (1998). Analytical Mechanics. Cambridge University Press. Chapter 4. 
  • Dorn Bader Physik Gymnasium Gesamtband, Sek 2,, 2000 Scroedel Verlag, ISBN 3-507-10724-4
  • Metzler Physik J. Grehn, J.Kause, 4. Basim, ISBN 978-3-507-10710-6

Notlar[değiştir | kaynağı değiştir]

  1. ^ "TDK Bilim ve Sanat Terimleri Ana Sözlüğü". Erişim tarihi: 18 Nisan 2011.  [ölü/kırık bağlantı]
  2. ^ "Euler's Laws of Motion". 30 Mart 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 16 Nisan 2011. 
  3. ^ McGill & King (1995). Engineering Mechanics, An Introduction to Dynamics (3 bas.). PWS Publishing Company. ISBN 0-534-93399-8. 
  4. ^ Hand, Louis N.; Finch, Janet D. (1998). Analytical Mechanics. Cambridge University Press. Chapter 4. 
  5. ^ Pike, Edward Roy; Sabatier, Pierre Celestin (2002). Scattering. Academic Press. s. 703. ISBN 0-126-13760-9. , Chpater 2.1.3, page 703

Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? Nedir? :Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? ile ilgili Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? burada bulabilirsiniz. Detaylar için sitemizi geziniz Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? Ne Demektir? Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? Açıklaması Nedir? Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? Cevabı Nedir? Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? Kelimesinin Anlamı? Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? konusu Nedir Ne, yaşantımızda sık kullanılan kelimelerden birisi olarak karşımıza çıkar. Hem sosyal medyada hem de gündelik yaşantıda kullanılan ne kelimesi, uzun yıllardan beri dilimizdedir. Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? Türk Dil Kurumu na (TDK) göre farklı anlamları olan ne kelimesi, Türkçe de tek başına ya da çeşitli cümleler eşliğinde kullanılabilir. Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? Ne kelimesi ne demek, TDK ya göre anlamı nedir sorularının cevabını arayanlar için bildiris.com doğru adres! Peki, ne kelimesi ne demek, TDK ye göre anlamı nedir? Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? Ne kelimesinin kökeni ne, ne kelimesinin kaç anlamı var? Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? İşte TDK bilgileri ile merak edilenler
Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? Açıklaması? :Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? Açıklama Bir Terim Kavram Ya Da Başka Dilsel Olgunun Daha İyi Anlaşılması İçin Yapılan Ek Bilgidir.Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? Söz Konusu Bilgi Açıklanacak Sözcükten Daha Uzun Olur Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? Açıklama İle İlgili Durumun Kanıtı Şu Şekilde Doğrulanabilir Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? Bir Sözlükteki Tanım İlgili Sözcük Yerine Kullanılabilirse, Bu Bir Açıklamadır. Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? Yani Aynı Bağlam İçinde Hem Sözcük Hem De Tanım Kullanılırsa Ve Anlamsal Açıdan Bir Sorun Oluşturmuyorsa Bu Bir Açıklamadır.
Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? Gerçek mi? :Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? ile ilgili Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? burada bulabilirsiniz. Detaylar için sitemizi geziniz Gerçek anlam Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? sözcüklerin birincil anlamı ile (varsa) bu anlamla doğrudan ilişkili olan anlamlarıdır. Gerçek anlam, temel anlam ile yan anlamların bileşkesidir. Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? Bir sözcüğün mecaz olmayan tüm anlamlarını kapsar.
Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? Hakkında? :Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? ile ilgili Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? burada bulabilirsiniz. Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? Detaylar için sitemizi geziniz Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? Bu sayfada Hakkında nedir Hakkında ne demek Hakkında ile ilgili sözler cümleler bulmaca kısaca Hakkında anlamı tanımı açılımı Hakkında hakkında bilgiler Momentum nedir?, Momentum anlamı nedir?, Momentum ne demektir? resimleri Hakkında sözleri yazıları kelimesinin sözlük anlamı nedir almanca ingilizce türkçe çevirisini bulabilirsiniz
Dabak, Almanya kadın millî voleybol takımı, Hırami Ahmet Paşa Mescidi, José Holebas, NGC 4542, IV. Pedro (Aragon Kralı), Idiopidae, Çubuksuz merceksi galaksi, Kargo uçakları için NATO rapor isimleri listesi, Frederik Ndoci, Küçük Polonya Voyvodalığı, Marratxí, Füturizm, Fütürizm, Hermann von Salza, Moshe Dayan, Spinosaurinae, Bembridge, Zhong Ding, William Shakespeare, Mickey Madden, Kievli İsidoros, Boğazlar Savaşı, James Dallaway, Hasköy Musevi Mezarlığı, Brulé, Afragola, NGC 5477, Ankara florası, Tim McInnerny, Konfüçyüs, Wuzhishan, 2008 yılı Türkçe Rock Top 20 1 numara parçaların listesi, Eugène Flandin, 30 Ocak 1939 Reichstag konuşması, Hilti (makine), NGC 2345, Duraklama dönemi Osmanlı sadrazamları listesi, Trakyalılar, Kudüs Hadassah Hastanesi, Toyota Dyna, Güneş tutulması, Tarsus, Mersin, Makarna listesi, Maksutali, Perakende park, Mesut Güneri, Albatrosgiller, İslamiyet ve Sarhoşluk, Matematik, Fasis Kuşatması, Çatı penceresi, Rhyticeros, Melisa Can, Toma Prelyuboviç, Emlak vergisi, Türkmen Devlet Ekonomi ve Yönetim Enstitüsü, Augusta Antonina, Berke, Bathylepeta, Aşkabat Uluslararası Otobüs Terminali, Behruz Boçani, Thymus reverdattoanus, Papa V. Nicolaus, Taşkent Parkı, Bamberg County, Amelia Bones, Anapara, Ertuğrul Gazi Camii, Domovoi, Talikota Muharebesi, Aşkabat Veledromu, Emirsultan, Karacabey, Olimpiyat Stadyumu (Aşkabat), Ribes, Göltarla, Elmalı, Ökse ardıç kuşu, Sakızlı Leonardo, Medeni ve Siyasi Haklara ilişkin Uluslararası Sözleşme, Puşkin Devlet Rus Dram Tiyatrosu, Leon Osman, Münip Uzsoy, Cullman, Alabama, Atatürk Meydanı (Aşkabat), Oğuzhan ve Oğulları Çeşmesi, 2. Çağatay Hükûmeti, Boğazcumafakılı, Sorgun, Kalkınış Meydanı, Tolga Altun, Languedoc, Radzymin Muharebesi, Lactuca, Kalkan HK, Bülent Eken, Kentsel tarım, Aşkabat Uluslararası Havalimanı, Antalyada 2024 Türkiye yerel seçimleri, Sergi Köşkü, Mineral, Kızılırmak, Çankırı,
Fişeksiz Nedir?, Zülcelâl İsminin Anlamı Nedir?, Sözdar Akdoğan Kimdir?, Murat Turna Kimdir?, Fahri Özkan Kimdir?, Zührevi İsminin Anlamı Nedir?, Fişekli Nedir?, Züğürt İsminin Anlamı Nedir?, İzmir bayrağı Anlamı Nedir, İzmir bayrağı Nasıl Oluştu, İzmir bayrağı Tarihi, İzmir bayrağı Renkleri, İzmir bayrağı Tasarımı, Filiz Çelik Kimdir?, Toksikolojik Nedir?, Fistolu Nedir?, Koray Önsel Kimdir?, Zübük İsminin Anlamı Nedir?, Toksik Nedir?, Fikret Tufanyazıcı Kimdir?, Zulmeden İsminin Anlamı Nedir?, Fistansız Nedir?, İlker Yücel Kimdir?, Tokatlı Nedir?, Zömbe İsminin Anlamı Nedir?, Gadsden bayrağı Anlamı Nedir, Gadsden bayrağı Nasıl Oluştu, Gadsden bayrağı Tarihi, Gadsden bayrağı Renkleri, Gadsden bayrağı Tasarımı, Tokalı Nedir?, Selma Sarıcıoğlu Çalışkan Kimdir?, Zottiri İsminin Anlamı Nedir?, Ümit Duman Kimdir?, Zot İsminin Anlamı Nedir?, Bahadır Gökmen Kimdir?, Berrin Selbuz Kimdir?, Tok Sözlü Nedir?, Fiskal Nedir?, Zorunlu İsminin Anlamı Nedir?, Zorlu İsminin Anlamı Nedir?, Toimeton Nedir?, Ömer Eldemir Kimdir?, Demokratik Kampuçya bayrağı Anlamı Nedir, Demokratik Kampuçya bayrağı Nasıl Oluştu, Demokratik Kampuçya bayrağı Tarihi, Demokratik Kampuçya bayrağı Renkleri, Demokratik Kampuçya bayrağı Tasarımı, Kürşat Özer Kimdir?, Zorlayıcı İsminin Anlamı Nedir?, Sertaç Çelikkaleli Kimdir?, Zorlamasız İsminin Anlamı Nedir?, Togolu Nedir?, Kenan Çarboğa Kimdir?, Zorlama İsminin Anlamı Nedir?, Bizans İmparatorluğu bayrakları ve sembolleri Anlamı Nedir, Bizans İmparatorluğu bayrakları ve sembolleri Nasıl Oluştu, Bizans İmparatorluğu bayrakları ve sembolleri Tarihi, Bizans İmparatorluğu bayrakları ve sembolleri Renkleri, Bizans İmparatorluğu bayrakları ve sembolleri Tasarımı, Burak Ustalı Kimdir?, Zorca İsminin Anlamı Nedir?, Zorba İsminin Anlamı Nedir?, İlker İpek Kimdir?, Gülcan Alp Kimdir?, Zoraki İsminin Anlamı Nedir?, Niyazi Ünalmış Kimdir?, Zor İsminin Anlamı Nedir?, Fin Ugor Nedir?, Başkurdistan Özerk Sovyet Sosyalist Cumhuriyeti bayrağı Anlamı Nedir, Başkurdistan Özerk Sovyet Sosyalist Cumhuriyeti bayrağı Nasıl Oluştu, Başkurdistan Özerk Sovyet Sosyalist Cumhuriyeti bayrağı Tarihi, Başkurdistan Özerk Sovyet Sosyalist Cumhuriyeti bayrağı Renkleri, Başkurdistan Özerk Sovyet Sosyalist Cumhuriyeti bayrağı Tasarımı, Asiye Küçükyılmaz Kimdir?, Tirşemsi Nedir?, Zoolojik İsminin Anlamı Nedir?, Tirşe Gözlü Nedir?, Filtresiz Nedir?, Zom İsminin Anlamı Nedir?, İbrahim Kaan Kimdir?, Filtreli Nedir?, Hasan Ataman Kimdir?, Ziyasız İsminin Anlamı Nedir?, Filozofik Nedir?, Ziyansız İsminin Anlamı Nedir?, Aslan ve Güneş Anlamı Nedir, Aslan ve Güneş Nasıl Oluştu, Aslan ve Güneş Tarihi, Aslan ve Güneş Renkleri, Aslan ve Güneş Tasarımı, Şeref Tamtürk Kimdir?, Onur Sergen Doğan Kimdir?, Ziyadar İsminin Anlamı Nedir?, İsmail Büyükkayıkçı Kimdir?, Filolojik Nedir?, Canan Kebenç Özkan Kimdir?, Tipsiz Nedir?, Tipolojik Nedir?, Zirai İsminin Anlamı Nedir?, Okan Işıktaş Kimdir?, Tipili Nedir?, Arap İsyanı bayrağı Anlamı Nedir, Arap İsyanı bayrağı Nasıl Oluştu, Arap İsyanı bayrağı Tarihi, Arap İsyanı bayrağı Renkleri, Arap İsyanı bayrağı Tasarımı, Zingal İsminin Anlamı Nedir?, Zinde İsminin Anlamı Nedir?, Yrd Doç Dr Berat Ahi Kimdir? Yrd Doç Dr Berat Ahi Nereli Yrd Doç Dr Berat Ahi Kaç Yaşında?, İsmail Keskin Kimdir?, Zincirleme İsminin Anlamı Nedir?, Filantrop Nedir?, Özgen Aydıncak Kimdir?, Zimmetli İsminin Anlamı Nedir?, Amerika Konfedere Devletleri bayrağı Anlamı Nedir, Amerika Konfedere Devletleri bayrağı Nasıl Oluştu, Amerika Konfedere Devletleri bayrağı Tarihi, Amerika Konfedere Devletleri bayrağı Renkleri, Amerika Konfedere Devletleri bayrağı Tasarımı, Atakan Özkan Kimdir?, Necdet Kayra Kimdir?, Zilli İsminin Anlamı Nedir?, Semra Kıratlı Kimdir?, Zilingir İsminin Anlamı Nedir?, Tiksinç Nedir?, Fil Dişi Nedir?, Ümit Özer Kimdir?, Zikzaklı İsminin Anlamı Nedir?, Abdülvahit Vardar Kimdir?, Tiko Nedir?, Ak Sancak Anlamı Nedir, Ak Sancak Nasıl Oluştu, Ak Sancak Tarihi, Ak Sancak Renkleri, Ak Sancak Tasarımı,