Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir?

Kütle çekimsel dalga Nedir?

Kütle çekimsel dalga Nedir?, Kütle çekimsel dalga Nerededir?, Kütle çekimsel dalga Hakkında Bilgi?, Kütle çekimsel dalga Analizi? Kütle çekimsel dalga ilgili Kütle çekimsel dalga ile ilgili bilgileri sitemizde bulabilirsiniz.  Kütle çekimsel dalga ile ilgili daha detaylı bilgi almak ve iletişime geçmek için sayfamıza tıklayabilirsiniz. Kütle çekimsel dalga Ne Anlama Gelir Kütle çekimsel dalga Anlamı Kütle çekimsel dalga Nedir Kütle çekimsel dalga Ne Anlam Taşır Kütle çekimsel dalga Neye İşarettir Kütle çekimsel dalga Tabiri Kütle çekimsel dalga Yorumu 

Kütle çekimsel dalga Kelimesi

Lütfen Kütle çekimsel dalga Kelimesi İle ilgili Daha Fazla Bilgi Almak İçin Kategoriler Sayfamıza Bakınız. Kütle çekimsel dalga İlgili Sözlük Kelimeler Listesi Kütle çekimsel dalga Kelimesinin Anlamı? Kütle çekimsel dalga Ne Demek? ,Kütle çekimsel dalga Ne Demektir? Kütle çekimsel dalga Ne Demektir? Kütle çekimsel dalga Analizi? , Kütle çekimsel dalga Anlamı Nedir?,Kütle çekimsel dalga Ne Demektir? , Kütle çekimsel dalga Açıklaması Nedir? ,Kütle çekimsel dalga Cevabı Nedir?,Kütle çekimsel dalga Kelimesinin Anlamı?,Kütle çekimsel dalga Kelimesinin Anlamı Nedir? ,Kütle çekimsel dalga Kelimesinin Anlamı Ne demek?,Kütle çekimsel dalga Kelimesinin Anlamı Ne demektir?

Kütle çekimsel dalga Bu Kelimeyi Kediniz Aradınız Ve Bulamadınız

Kütle çekimsel dalga Kelimesinin Anlamı Nedir? Kütle çekimsel dalga Kelimesinin Anlamı Ne demek? , Kütle çekimsel dalga Kelimesinin Anlamı Ne demektir?

Demek Ne Demek, Nedir? Tdk'ye Göre Anlamı

Demek kelimesi, dilimizde oldukça kullanılan kelimelerden birisidir. TDK'ye göre, demek kelimesi anlamı şu şekildedir:

Söylemek, söz söylemek -  Ad vermek -  Bir dilde karşılığı olmak -  Herhangi bir ses çıkarmak -  Herhangi bir kanıya, yargıya varmak -  Düşünmek - Oranlamak  - Ummak, - Erişmek -  Bir işe kalkışmak, yeltenmek -  Saymak, kabul etmek -  bir şey anlamına gelmek -  öyle mi,  - yani, anlaşılan -  inanılmayan, beklenmeyen durumlarda kullanılan pekiştirme veya şaşma sözü

Kütle çekimsel dalga Bu Kelimeyi Kediniz Aradınız Ve Bulamadığınız İçin Boş Safyadır

Demek Kelimesi Cümle İçerisinde Kullanımı

Eskilerin dediği gibi beşer, şaşar. -  Muşmulaya döngel de derler.

Kamer `ay` demektir. -  Küt dedi, düştü. -  Bu işe herkes ne der? -  Güzellik desen onda, zenginlik desen onda. -  Bundan sonra gelir mi dersin? -  Saat yedi dedi mi uyanırım. - Kımıldanayım deme, kurşunu yersin. Ağzını açayım deme, çok fena olursun. - Yarım milyon dediğin nedir? - Okuryazar olmak adam olmak demek değildir. -  Vay! Beni kovuyorsun demek, pekâlâ! Kütle çekimsel dalga - Demek gideceksin.

Demek Kelimesi Kullanılan Atasözü Ve Deyimler

- dediği çıkmak - dediğinden (dışarı) çıkmak - dediğine gelmek

 - dedi mi - deme! - demediğini bırakmamak (veya koymamak) - deme gitsin  - demek istemek , - demek ki (veya demek oluyor ki) , - demek olmak , - dememek - der oğlu der - deyip de geçmemek - diyecek yok - dediği çıkmak , {buraya- - dediğinden (dışarı) çıkmak - dediğine gelmek i, - dedi mi , {buraya- - deme! - demediğini bırakmamak (veya koymamak) - deme gitsin , - demek istemek - demek ki (veya demek oluyor ki) - demek olmak - dememek - der oğlu der - deyip de geçmemek - diyecek yok

Kütle çekimsel dalga

Kütle çekimsel dalga Nedir? Kütle çekimsel dalga Ne demek? , Kütle çekimsel dalga Kelimesi İle ilgili Daha Fazla Bilgi , Almak İçin Kategoriler Sayfamıza Bakınız. İlgili Sözlük Kelimeler Listesi

Kütle çekimsel dalga Kelimesinin Anlamı? Kütle çekimsel dalga Ne Demek? Kütle çekimsel dalga Ne Demektir? ,Kütle çekimsel dalga Analizi? Kütle çekimsel dalga Anlamı Nedir? Kütle çekimsel dalga Ne Demektir?, Kütle çekimsel dalga Açıklaması Nedir? , Kütle çekimsel dalga Cevabı Nedir? , Kütle çekimsel dalga Kelimesinin Anlamı?






Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir?

Kütleçekimsel dalga

Vikipedi, özgür ansiklopedi
(Kütle çekimsel dalga sayfasından yönlendirildi)
Genel görelilik
İlgili başlıklar
düzenle 

Kütleçekimsel dalga veya kütleçekim dalgası (KÇD), fizikte uzayzaman eğriliğinde oluşan kırışıklık olup kaynağından dışarıya doğru bir dalga olarak yayılır. Albert Einstein tarafından 1915'te varlığı öngörülen bu dalgalar,[1] Genel Relativite Teorisi'ne dayanarak[2] kütleçekimsel ışıma şeklinde enerji naklederler. Tespit edilebilir kütleçekimsel dalga kaynakları, beyaz cüce, nötron yıldızı veya kara delik içeren çift yıldız sistemleri olabilir. Kütleçekimsel dalgaların varlığı, kendisiyle fiziksel etkileşimlerin yayılma hızını sınırlama kavramını getiren ve genel relativite ile ilgili Lorentz değişmezliğinin muhtemel bir sonucudur. Bu dalgaların, etkileşim hızını sonsuz olarak kabul eden Newton'un Çekim Teorisi'nde varlığı mümkün değildir.

Doğrudan doğruya tespit edilemeyen kütleçekimsel ışımanın varlığı 2016 yılına kadar dolaylı olarak bilinmekteydi. Kütleçekimsel dalgaların matematiksel denksizliklerden ziyade olduğunu gösteren Hulse-Taylor çift yıldızı ile ilgili ölçümleri içeren çalışmalar, 1993'te Nobel Fizik Ödülü'ne layık görülmüştür. Muhtelif kütle-çekimsel dalga detektörleri mevcut olmakla birlikte bugüne kadar bu dalgaların tespitini yapamamışlardır.

11 Şubat 2016'da Lazer Interferometer Yerçekimi Dalgası Gözlemevi (LIGO) çalışma grubu, birbirleri ile çarpışan iki kara delikten yer çekimsel dalgalar tespit edildiğini açıkladı. Keşfedilen yerçekimi dalgalarının iki kara deliğin 1,3 milyar ışık yılı ötedeki çarpışmasıyla ortaya çıktığı ve çarpışma sesinin kaydedildiği ifade edildi.[3][4]

Giriş[değiştir | kaynağı değiştir]

Einstein'in Genel Relativite Teorisi'ne göre çekim, uzayzamanın eğriliğinden doğan bir fenomen olarak ele alınır. Bir noktadaki bu eğrilik, orada bulunan bir kütlenin varlığından kaynaklanır. Genel olarak bir hacim ne kadar çok kütle içinde bulundurursa bu hacmin çeperindeki uzayzaman da o derece eğrilecektir. Kütleli cisimler hareket ettiğinde buradaki eğrilik, bu cisimlerin hareketini yansıtacak şekilde değişir. Özel durumlarda hızlana cisimler, bu eğriliği değiştirerek dışarıya doğru dalgasal biçimde ışık hızıyla yayılmasını sağlarlar.

Kütleçekimsel dalga uzaktaki bir gözlemcinin yanından geçtiğinde gözlemci, uzayzamanın oluşan zorlanmadan dolayı çarpıldığını fark eder. Serbest cisimlerarası uzaklıklar, dalga geçerken dalganın frekansına uygun şekilde ritmik olarak artar ve azalır. Bu hareket, serbest cisimlere dengede olmayan bir kuvvet etki etmemiş olmasına rağmen olur. Hareketin genliği, cismin dalga kaynağına olan uzaklığıyla ters orantılıdır. İçeri doğru birbirine yaklaşarak dönen (İng. İngilizceinspiralling) nötron yıldızı çiftinin kaynaştığında kütleçekimsel dalgalar için kuvvetli bir kaynak oldukları tahmin edilmektedir. Çünkü bu kaynaşma sırasında birbirine iyice yaklaşan gök cisimlerinin kütleleri çok büyük bir ivmeyle birbirlerine doğru hareket etmektedirler. Bu tür kaynaklara olan büyük uzaklıklardan dolayı Dünya'da eğriliklerin 1'e 1020'den az olması beklenmektedir. Başka bir ifadeyle Dünya ile Güneş arası uzunluğunda olan hayalî bir detektörün en az 1,5 nm'lik bir değişikliği farketmesi yetersiz kalacaktır. Bilginler, bu dalgaların varlığını daha da hassas detektörlerle göstermeye çalışmaktadırlar. 2012'deki en hassas detektör, LİGO ve VİRGO rasathanelerinde kullanılmakta olup 5×10-22'lik bir değişimi fark edebilecek kapasitededirler.[5] Bu rasathanelerde kütleçekimsel dalgaların tespit edilememesi, bu tür olayların çokluğuna bir üst sınırlama getirmektedir. Uzaya fırlatılmak üzere ESA'nın geliştirmekte olduğu Laser Interferometer Space Antenna rasathanesi daha bitmemiştir.

Prensip olarak KÇD'ler her genlikte yayılabilir. Fakat çok düşük frekanstaki KÇD'leri tespit etmek imkânsızken çok yüksek frekanslarda "yayın" yapabileceğine inanılan bir kaynak bilinmemektedir. Stephen W. Hawking ve Werner Israel, 10-7 ilâ 1011 Hz arası frekanslarda dalga üretebilecek muhtemel kaynakları listelemişlerdir.[6]

Geçen kütleçekimsel dalgaların etkileri[değiştir | kaynağı değiştir]

Artı polarizasyonlu bir kütleçekimsel dalganın parçacık halkasında bıraktığı etki.
Çapraz polarizasyonlu bir kütleçekimsel dalganın parçacık halkasında bıraktığı etki.

Geçmekte olan bir KÇD'nın etkisi, (ekranınınız yüzeyi gibi) kusursuz düz bir uzayzaman düzleminde bulunan hareketsiz test parçacıklarınca görüntülenebilir. KÇD, parçacıklar arasından (ekranınıza bakış doğrultusu gibi) bu düzleme dik doğrultuda geçerken bu parçacıklar, animasyonda da görüldüğü üzere uzayzamanın çarpıklığını izleyerek çapraz şekilde salınırlar. Parçacıkların kapsadığı alan bu sırada değişmediği gibi parçacıklar, dalganın yayılma yönünde hareket etmezler.

Animasyonda gösterilen salınımlar, tartışmada anlaşılması için abartılmıştır. Gerçekte KÇD'nın genliği, doğrusal çekimde belirtildiği gibi çok küçüktür. Fakat bu abartılmış salınımlar, mesela dairesel hareket eden bir kütle çiftince meydana getirilen KÇD'larla görülen salınım tarzını görüntülerler. Bu durumda KÇD'nın genliği sabitken polarizasyon düzlemi, dairesel hareketin periyodunun iki katıyla değişir veya döner. Böylece zamanla değişen KÇD boyu (veya periyodik uzayzaman gerinimi), animasyonda görülen bir değişime uğrar.[7] Yörünge eliptikse KÇD'nın genliği, Einstein'ın kuadrupol formülüne göre zamanla değişir.[8]

Diğer dalgalarda olduğu gibi KÇD'ları tanımlayan birkaç kullanışlı özellikleri vardır:

  • Genlik: Genellikle ile simgelenir. Animasyonda gerilme veya sıkışma olarak görülen hareketin bir kesri olan genlik, dalganın boyudur. Burada gösterilen genlik, kabaca veya %50'dir. Dünya'dan geçmekte olan KÇD'ları, burada gösterilenin birçok bilyonda biri kadardır — . Burada bu büyüklüğün elektromanyetik dalganın olan genliği ile benzeşmediğine dikkat çekilmelidir.
  • Frekans: Genelde f ile simgelenir. 1/iki ardışık en büyük gerilme veya sıkışma arasında geçen zaman olan bu büyüklük, salınım frekansını gösterir.
  • Dalga boyu: Genelde ile gösterilen bu büyüklük, en büyük gerilme veya sıkışma arası uzaklıktır.
  • Hız: Dalga üzerinde (mesela en büyük gerilme veya sıkışma yerindeki) bir noktanın hızıdır. Küçük genlikli KÇD'lar için bu hız, ışık hızına eşittir ().

Bir KÇD'nın hızı, dalga boyu ve frekansı, ışık dalgası gibi denklemiyle bağıntılıdır. Mesela buradaki animasyonlar, takriben her iki saniyede bir kere salınırlar. Bu salınım, 0,5 Hz'lik bir frekansa ve 600.000 km'lik ya da Dünya çapının 47 katındaki bir dalga boyuna tekabül eder.

Yukarıdaki örnekte aslında dalganın bir ayrıcalığı vardır. Dalganın doğrusal ve "pozitif" polarize edildiğini farz ettik. Böyle dalgalar şeklinde yazılır. Bir KÇD'nın polarizasyonu, bir elektromanyetik dalganın polarizasyonu gibi olmakla birlikte KÇD'da 90° yerine 45°'dir. Bilhassa "çapraz" polarizasyonlu bir KÇD () olsaydı, test parçacıkları üzerindeki tesiri temelde aynı, fakat ikinci animasyondaki gibi 45° dönmüş olacaktı. Işık polarizasyonundaki gibi KÇD'ların polarizasyonu da dairesel polarizasyon olarak da ifade edilebilirdi. KÇD'lar, kaynaklarının tabiatından dolayı polarizedirler. Bir dalganın polarizasyonu, bir sonraki bölümde görüleceği gibi kaynağından geldiği açıya bağlıdır.

Kütleçekimsel dalgaların kaynakları[değiştir | kaynağı değiştir]

Farklı kütlede iki yıldız dairesel yörüngededirler. Her biri, kırmızı küçük artı işaretiyle gösterilmiş ortak ağırlık merkezi etrafında dönmektedir. Bu çift yıldızda büyük kütle küçük yörüngededir.

Genel olarak KÇD'lar hızlanan cisimlerden kusursuz küresel ya da silindirik simetrik hareket yapmamaları halinde yayılırlar. Döner halter, bu tür hareketlere basit bir örnektir: eğer bir mile bağlı tekerlekler gibi tam ortadan çevrilirlerse KÇD yaymayacaktır. Eğer tekerlerler milin tam ortasından değil de birbiri etrafında dönen gök cisimleri gibi başka bir eksen etrafında dönerlerse KÇD'lar teoriye göre yayılır. Kütlesi ve dönüş hızı ne kadar yüksekse o derece fazla kütleçekimsel ışıma yayacaktır. Eğer iki halter tekerleğinin birbiri etrafında hızlıca dönen nötron yıldızları ya da kara delikler gibi büyük kütleli yıldızlar olduğunu farz edersek hatırı sayılır miktarda kütleçekimsel ışıma uzaya yayılacaktır.

Daha detaylı örnekler:

  • Hemen hemen Kepler'si olan düzlemsel yörüngede birbiri etrafında bir gezegenin yıldızı etrafında döndüğü gibi dönen iki cisim ışıyacaktır.
  • Eksenine göre simetrik olmayan (ve mesela ekvatorunda bir kabarık ya da çukuru olan bir planetoid ışıyacaktır.
  • Teorik olarak simetrik olarak patlayanlar hariç bir süpernova ışıyacaktır.
  • Yalıtılmış ve kendi etrafında dönmeyen katı bir cisim, sabit hızla hareket ettiğinde ışımayacaktır. Bu durum doğrusal momentumun korunumu prensibinin sonucu olarak düşünülebilir.
  • Kendi etrafında dönen bir disk ışımayacaktır. Bu durum açısal momentumun korunumu prensibinin sonucu olarak düşünülebilir.
  • Küresel simetrik nabız gibi titreşen (yani sıfırdan farklı monopol momenti veya kütlesi olup sıfır kuadrupol momenti olan) bir yıldız ışımayacaktır. Bu durum, Birkhoff'un teoremine uygundur.

Daha teknik bir ifadeyle yalıtılmış bir sistemin stres-enerji tensörünün kuadrupol momentinin üçüncü türevi (veya ninci çoklu kutup momentinin zamana göre ninci türevi), KÇD yayabilmesi için sıfırdan farklı olmalıdır. Bu da elektromanyetik ışıma için gereken elektriksel yük ya da akımın değişen dipol momentine benzer.

Birbiri etrafında dönen cisimlerin ışıdığı güç[değiştir | kaynağı değiştir]

KÇD'lar, kaynaklarından öteye enerji taşırlar. Birbiri etrafında dönen cisimlerde bu, zamanla içe doğru helezon şeklinde birbirlerine yaklaşmalarına ve yörünge çapının küçülmesine yol açar. Mesela iki kütleden meydana gelen Dünya-Güneş sistemi gibi birbiri etrafında ışık hızına nispetle yavaşça dönen basit bir sistem düşünün. Bu iki kütlenin birbiri etrafında dairesel bir yörüngede - düzleminde döndüğünü farzedelim. İyi bir yaklaşım için kütlelerin basit Kepler yörüngelerde döndüğünü kabul ediyoruz. Fakat bu tür yörüngeler değişken kuadrupol momenti temsil ederler. Dolayısıyla sistem KÇD yayacaktır.

Her iki kütlenin ve olduğunu ve birbirlerinden uzakta bulunduklarını farz edelim. Bu sistemin yaydığı güç

,[9]

'dür. Burada G çekim sabiti, c vakumdaki ışık hızı ve eksi işareti de gücün sistemden dışarıya doğru yayıldığını gösterir. Güneş ve Dünya sistemi gibi bir sistem için 1,5×1011 m ve ve de 2×1030 kg ve 6×1024 kg civarıdır. Bu durumda güç 200 vattır. Bu değer, takrîben 3,86×1026 watt olan Güneş'in yaydığı toplam elektromanyetik ışıması ile kıyaslanınca küçüktür.

Teoride kütleçekimsel ışımayla enerji kaybı, zamanla Dünya'yı Güneş'in içine düşürür. Fakat Güneş etrafında dönen Dünya'nın toplam (potansiyel ve kinetik) enerji, takriben 1,14×1036 juldür. Bunun saniyede ancak 200 julü kütleçekimsel ışımayla kaybolduğundan yörünge, günde 1×10-15 metre ya da takriben bir protonun çapı kadar büzülür. Bu büzülmeyle Dünya'nın helezonlar çizerek Güneş'le bu yüzden kaynaşması, Kâinat'ın yaşının 1×1013 katı kadar sürmelidir. Bu hesap r'nin zamanla azalmasını göz ardı etmek olmasına rağmen sürenin büyük bir kısmında cisimler birbirinden çok uzakta ve az miktarda ışımaktadır; yani bu örnekteki bu dikkatsizlikten doğan fark küçüktür. Sadece birkaç milyar sene sonra Dünya'nın kırmızı dev hâline gelen Güneş tarafından yutulacağı tahmin edilmektedir.

Işınan kütleçekimsel enerjinin daha dramatik bir örneği, birbiri etrafında 1,89×108 m (sadece 0,63 ışık saniyesi) uzaklığında dönen ve her biri Güneş kütleli olan iki nötron yıldızı oluşturur. [Güneş, Dünya'dan ortalama sekiz dakika 20 saniye uzaktadır.] Bu cisimlerin kütlelerini yukarıdaki denkleme koyunca kütleçekimsel ışımanın 1,38×1028 watt olduğu görülür. Bu da Güneş'in toplam elektromanyetik ışımasının 100 mislidir.

Kütleçekimsel ışımadan dolayı yörüngenin küçülmesi[değiştir | kaynağı değiştir]

Kütleçekimsel ışıma, birbiri etrafında dönen cisimlerin enerjisini alır. Evvelâ yörüngeleri daireselleştirir, sonra da çaplarını azaltır. Yörüngenin enerjisi azaltılınca cisimlerarası uzaklık azalarak birbiri etrafında daha çabuk dönmeye başlarlar. Buna rağmen toplam açısal momentum azalmaktadır. Bu azalma, kütleçekimsel ışımayla götürülen açısal momentuma karşılıktır. Cisimlerin birbirine olan uzaklığın zamana göre azalma nispeti şu formülle hesaplanır:[9]

.

Buradaki değişkenler, bir önceki denklemdekilerle aynıdır.

Yörünge, yarıçapın üçüncü kuvvetiyle ters orantılı olarak küçülür. Yarıçap, ilk değerinin yarısına indiğinde küçülmesi sekiz kere daha hızlanmış olur. Kepler'in üçüncü kanununa göre dönüş hızı bu noktada katına ya da neredeyse başdaki hızın üç misline çıkacaktır. Yarıçap azalınca kütleçekimsel ışımaya giden güç daha da artar. Önceki denklemden de görülebileceği gibi ışıdığı güç, yarıçapın beşinci kuvvetiyle ters orantılı olarak artar. Bu da bu durumda 32 kat demektir.

Bundan önce verilen değerleri Güneş ve Dünya için kullanırsak Dünya yörüngesinin saniyede 1,1×10-20 metre küçüldüğü ortaya çıkar. Bu da yılda 3,5×10-13 m'dir ya da hidrojen atomunun çapının 1/300'üdür. Başka bir ifadeyle kütleçekimsel ışımanın Dünya'nın yörüngesine etkisi, Kâinat'ın bütün ömrü boyunca dahî ihmâl edilebilecek kadar azdır. Birbirine daha yakın dolanan cisimler için bu böyle değildir.

Daha pratik bir örnek, Güneş benzeri bir yıldızın kütlesi çok bir kara delik etrafındaki yörüngesidir. Samanyolu'muz, merkezi olan Sagittarius A'da potansiyel olarak 4.000.000 Güneş kütlesi olan bir kara deliğe sahiptir. Buna benzer süper masif kara delikler, neredeyse her galaksinin merkezinde bulunmaktadır. Bu örnek için iki milyon Güneş kütlesine sahip bir kara deliğin etrafında 1,89×1010 m (63 ışık saniyesi) uzaklıkta dönen bir Güneş kütleli bir yıldız farz edelim. Kara deliğin kütlesi 4×1036 kg ve kütleçekimsel yarıçapı 6×109 m'dir. Yörüngenin periyodu 1.000 s veya 17 dakikanın biraz altında olacaktır. Güneş kütleli yıldız, merkezdeki kara deliği saniyede 7,4 metre ya da her dolanımda 7,4 km yaklaşacaktır. Çarpışma çok sürmeden olacaktır.

Bir çift Güneş kütleli nötron yıldızı, birbirlerinden 1,89×108 m (189.000 km) uzakta olduğu hâlde birbirleri etrafında dönmektedirler. Bu da Güneş'in çapının 1/7'sinden biraz daha az ya da 0,63 ışık saniyesidir. Yörünge periyodu 1.000 s olacaktır. Yeni kütle ve yarıçapı yukarıdaki formüldeki yerine koyunca yörüngenin küçülmesi 3,7×10-6 m/s veya dönüş başına 3,7 mm'dir. Bu da yılda 116 metredir ve kozmik zaman ölçeğinde ihmâl edilemez.

Bunun yerine bu nötron yıldızlarının 1,89×106 m (1890 km) uzaktan birbiri etrafında döndüklerini farz edelim. Periyotları 1 s ve yörüngesel hızları ışık hızının 1/50'sidir. Yörüngeleri her devirde 3,7 m küçülecektir. Yakın çarpışma kaçınılmazdır. Yörüngeden kontrolden çıkarcasına devam eden enerji kaybıyla yıldızlararası uzaklık daha hızlı şekilde küçülecektir. Sonuçta bir kara deliği oluşturup artık kütleçekimsel dalga yaymayacaklardır. Buna İngilizcede inspiral denir.

Yukarıdaki denklem, yarıçapın değişim hızı yarıçapa bağlı olduğu ve böylece sâbit olmadığından bu yörüngenin ömrünü doğrudan hesap etmek için kullanılamaz. Yörünge ömrü, bu denklemin entegrasyonuyla hesap edilebilir (bakınız bir sonraki bölüm).

Kütleçekimsel ışımadan dolayı yörüngesel ömür sınırları[değiştir | kaynağı değiştir]

Yörüngesel ömür, kütleçekimsel ışıma kaynaklarının en önemli özelliklerindendir. Kâinat'ta tespit edilebilecek kadar yakın olan çift yıldızların ortalama sayınsını belirler. Kısa ömürlü çift yıldızlar nispeten az olup kütleçekimsel ışıması kuvvetli olan kaynaklardandır. Uzun ömürlü çift yıldızlar sayıca daha çoktur, fakat zayıf kütleçekimsel dalga kaynağıdırlar. LIGO, iki nötron yıldızının kaynaşmak üzere olduğu frekans kuşağında en hassastır. Bu ışımanın olduğu zaman çerçevesi sadece birkaç saniye kadardır. Milyonlarca sene süren dönmeden sonra bir an meselesi olan bu olayı detektörün algılaması için tâlihin yaver gitmesi gerekmektedir. Böyle bir kaynaşmanın görülme ihtimâli onyılda bir kadardır.

Bir yörüngenin ömrü şu formülle hesaplanır:[9]

,

Burada r, birbiri etrafında dönen iki cismin ilk uzaklığıdır. Bu denklem, bir önceki denklemin yarıçap azalma hızına göre integralini alarak çıkarılır. Denklem, yörünge çapının sıfıra ne zaman ineceğini gösterir. Yörüngesel hız, ışık hızını hatırı sayılır bir yüzdesi olduğundan denklem hatâlı olur. Bu yüzden içeri doğru helezon yapan cisimlerin kaynaşmadan önceki birkaç milisaniyeye kadar kullanılabilir.

Kütlelerin yerine Güneş ve Dünya'nın kütlelerini ve yörünge yarıçapını koyunca bu yörünge için 3,44×1030 s veya 1,09×1023 yıl gibi çok uzun bir ömür çıkar (ki bu, takrîben Kâinat'ın yaşının 1015 katıdır). Gerçek değer, hesaplanandan az daha küçük olacaktır. Dünya, Güneş'e birkaç yarıçap uzaklıktan daha fazla yaklaştığında gelgitsel kuvvetlerin etkisiyle parçalanacaktır. Parçalar, Güneş etrafında bir halka oluşturur oluşturmaz KÇD ışıması da duracaktır.

İki milyon Güneş kütleli bir kara deliğin 1,89×1010 m etrafında dönen Güneş kütleli bir yıldızdan oluşan bir sistemin ömrü 6,50×108 s veya 20,7 senedir.

10 kilometre çapında birbiri etrafında 1,89×108 m (189.000 km) uzaktan dönen Güneş kütleli iki nötron yıldızı sisteminin ömrü 1,30×1013 saniye veya takrîben 414.000 yıldır. Yörünge periyodu 1.000 s olup çok uzakta olmaması halinde LISA ile izlenebilir. Yörüngesel periyodu bu civarda olan çok daha büyük sayıda beyaz cüce çiftleri bulunmaktadır. Beyaz cüce çiftlerinin kütleleri Güneş kütlesi, çapları da Dünya çapı civarında olur. Birbirleri ile kaynaşıp KÇD ışımaya son vermeden önce birbirleri etrafında dönerken aralarındaki uzaklık 10.000 km'den çok daha az olamaz. Sonuçta yeni bir nötron yıldızı ya da kara delik oluşur. Bu olana kadar kütleçekimsel ışımaları bir nötron yıldızı çiftiyle kıyaslanabilir. LISA, bu tür çift yıldızları tespit edebilecek tek kütleçekimsel deneydir.

Nötron yıldızı çiftinin yörünge çapı 1,89×106 m'ye (1890 km) düşünce kalan ömrü 130.000 s veya 36 saat civarıdır. Yörüngesel frekansı başta saniyede 1 devirken aradaki uzaklık 20 km'ye inip kaynaşmak üzere olduğu anda frekansı 918'e çıkar, kütleçekimsel ışıma yörünge frekansının iki katı olur. Tam kaynaşmadan önceki yörüngesel helezon, çift yıldızlar yeteri kadar yakın olması halinde LIGO tarafından gözlenebilir. Toplam ömrü milyarlarca sene olan böyle bir sistemdeki bu kaynaşmayı izlemek için LIGO'nun ancak birkaç dakikalık bir zaman penceresi vardır. Kâinat'ta bu tür kaynaşmalar çok olmasına rağmen böyle olayları baştaki gibi ayarlanan LIGO ile izleme ihtimali bir hayli düşüktür. Bunun sebebi aletin hassasiyetinin yeteri kadar sisteme erişecek kadar olamamasıdır. İlk ayarlarındaki LIGO, birkaç yılda hiçbir kaynaşma tespit edememiştir. Bu ayarlarla LIGO'nun ancak birkaç on yılda bir böyle bir olayı izleyebileceği düşünülmektedir. Yenilenen LIGO detektörünün hassasiyeti on kat daha fazla ve erişebildiği uzaklık on mislidir. Böylece gözlediği hacim de bin misline çıkar ve gözleyebileceği yıldız çifti adayları da 1000 misline çıkar. Böylece yılda onlarca tespitin mümkün olacağı beklenmektedir.

Dünya–Güneş sisteminin dalga genlikleri[değiştir | kaynağı değiştir]

Dairesel yörüngede olan sistemleri yaydıkları KÇD genliğine göre de düşünebiliriz. , yörünge düzleminin dikmesiyle gözlemcinin bakış doğrultusu arasındaki açı olsun. Bir gözlemcinin sistemin dışında kütle merkezinden uzaklığında olduğunu farz edelim. Eğer , dalga boyundan çok daha büyükse dalganın iki polarizasyonu

olacaktır. Burada Newton fiziğinde sabit açısal hızla dairesel bir yörünge kabul edilmiştir:

Mesela gözlemci - düzleminde ise ve 'dır. Böylece polarizasyonu her zaman sıfır olur. Ayrıca ışınan dalga frekansının dönme frekansının iki katı olduğunu görülüyor. Sonucu Dünya–Güneş sisteminin değerlerini denkleme koyarsak

olduğunu buluruz. Bu durumda dalga bulabilmek için en küçük uzaklık R ≈ 1 ışık yılıdır. Böylece tipik genlikler h ≈ 10−26 olacaktır. Başka bir ifade ile bir parçacıklar halkası 1026'da bir kadar genişleyip sıkışacaklardır. Bu değer, düşünülebilecek bütün detektörlerin hassasiyet sınırının bir hayli altındadır.

Başka kaynaklardan ışıma[değiştir | kaynağı değiştir]

Dünya-Güneş sisteminin oluşturduğu dalgalar çok ufak olmasına rağmen astronomlar, hatırı sayılır dalgalara sebep olan başka kaynakları gösterebilirler. Önemli bir örnek, birisinin çift pulsar olduğu Hulse-Taylor çift yıldızıdır.[10] Yörüngelerinin karakteristiği, yaydıkları radyo sinyallerinin Doppler etkisiyle değişiminden çıkarılabilir. Her bir yıldızın kütlesi 1,4 Güneş kütlesi olup yörüngelerinin çapı, Dünya-Güneş yörüngesinin 1/75'idir. Başka bir ifadeyle bu çap, Güneş çapının birkaç katıdır. Büyük kütlelerin ve küçük bir çapın bir araya gelmesiyle Hulse-Taylor Sistemi'nin yaydığı enerji, Dünya-Güneş Sistemi'nin verdiği enerjiden çok daha fazladır - takrîben 1022 katı kadar.

Yörünge hakkındaki bilgiler, dalga hâlinde ne kadar enerji (ve açısal momentum) yayılacağını kestirmeye yarar. Enerji oradan yayılırken yıldızlar birbirlerine yaklaşırlar. Bu etkiye içeri doğru dönme (İng. İngilizceinspiral) denir ve pulsarın sinyalinde gözlenebilir. Hulse-Taylor sistemi ölçümleri otuz seneden fazla bir süreden beri yapılmaktadır. Genel rölativitenin öngördüğü kütleçekimsel ışımanın gözlemlerle %0,2'lik bir hata ile uyuştuğu gösterilmiştir. 1993'te Russell Hulse ve Joe Taylor, kütleçekimsel dalgaların bu ilk dolaylı ispatından dolayı Fizik Nobel ödülüne lâyık görülmüşlerdir. Ne yazık ki bu ikili sistemin yörüngesel ömrü 1,84 milyar senedir. Bu süre, Kâinat'ın bilinen ömrünün hatırı sayılır bir kesridir.

İnspiraller, kütleçekimsel dalgaların önemli kaynaklarındandır. Her ne zaman beyaz cüceler, nötron yıldızları veya ikili siyah delikler gibi yoğun cisimler yakın oldukları hâlde birbirleri etrafında dönerse etrafa kuvvetli kütleçekimsel dalga yayarlar. Birbirlerine yakaştıkça bu dalgalar daha da kuvvetleşir. Öyle bir nokta gelir ki bu dalgaların etkisi, Dünya'daki veya Kâinat'taki başka cisimlerde doğrudan tespiti mümkün olur. Kütleçekimsel dalgayı doğrudan tespit etmeyi hedefleyen birkaç büyük ölçekli deney yapılmaktadır.[11]

Bu konudaki tek zorluk, Hulse-Taylor ikilisi gibi sistemlerin çoğunun o kadar uzakta olmasıdır. Hulse-Taylor ikilisinin yaydığı dalga genliği, Dünya'ya geldiğinde takrîben h ≈ 10−26 olacaktır. Fakat astrofizikçilerin bulmayı ümidettiği çok daha büyük genlikli kaynaklar vardır (h ≈ 10−20). En azından sekiz başka ikili pulsar keşfedilmiştir[12]

Kaynakça[değiştir | kaynağı değiştir]

  1. ^ Finley, Dave (25 Nisan 2013). "Einstein's gravity theory passes toughest test yet: Bizarre binary star system pushes study of relativity to new limits" [Einstein'in çekim teorisi şimdiye kadarki en sıkı testten geçiyor: Tuhaf çift yıldız sistemi, relativite çalışmalarını yeni sınırlara doğru itiyor] (HTML) (makale) (İngilizce). PHYS.ORG. 2 Mart 2014 tarihinde kaynağından arşivlendi. Erişim tarihi: 31 Mayıs 2013. 
  2. ^ Barish, Barry C. (2010). "The Detection of Gravitational Waves with LIGO" [LİGO ile kütleçekimsel dalgaların tespiti] (PDF) (makale) (İngilizce). California Institute of Technology, Pasadena, CA 91125, ABD. 27 Nisan 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 31 Mayıs 2013. 
  3. ^ Davide Castelvecchi & Alexandra Witze (11 Şubat 2016). "Einstein's gravitational waves found at last". Nature.com. 12 Şubat 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 11 Şubat 2016. 
  4. ^ Nadia Drake (11 Şubat 2016). "Found! Gravitational Waves, or a Wrinkle in Spacetime". National Geographic. 12 Şubat 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 11 Şubat 2016. 
  5. ^ LIGO Scientific Collaboration; Virgo Collaboration (2012). "Search for Gravitational Waves from Low Mass Compact Binary Coalescence in LIGO's Sixth Science Run and Virgo's Science Runs 2 and 3". Physical Review D. Cilt 85. s. 082002. arXiv:1111.7314 $2. 
  6. ^ Hawking, S. W. and Israel, W., General Relativity: An Einstein Centenary Survey, Cambridge University Press, Cambridge, 1979, 98.
  7. ^ Landau, L. D. and Lifshitz, E. M., The Classical Theory of Fields. Fourth Revised English Edition, Pergamon Press., 1975, 356–357.
  8. ^ Einstein, A., "Über Gravitationswellen." Sitzungsberichte, Preussische Akademie der Wissenschaften, 154, (1918).
  9. ^ a b c "Gravitational Waves:Edmund Bertschinger & Edwin F. Taylor (İngilizce)" (PDF). eftaylor.com. 7 Temmuz 2010. 13 Temmuz 2014 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 26 Nisan 2014. 
  10. ^ "Relativistic Binary Pulsar B1913+16: Thirty Years of Observations and Analysis" (PDF). 16 Kasım 2017 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 8 Eylül 2013. 
  11. ^ "Crashing Black Holes" (PDF). 7 Ocak 2011 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 8 Eylül 2013. 
  12. ^ "Binary and Millisecond Pulsars" (PDF). 1 Mart 2012 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 8 Eylül 2013. 

Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? Nedir? :Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? ile ilgili Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? burada bulabilirsiniz. Detaylar için sitemizi geziniz Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? Ne Demektir? Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? Açıklaması Nedir? Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? Cevabı Nedir? Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? Kelimesinin Anlamı? Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? konusu Nedir Ne, yaşantımızda sık kullanılan kelimelerden birisi olarak karşımıza çıkar. Hem sosyal medyada hem de gündelik yaşantıda kullanılan ne kelimesi, uzun yıllardan beri dilimizdedir. Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? Türk Dil Kurumu na (TDK) göre farklı anlamları olan ne kelimesi, Türkçe de tek başına ya da çeşitli cümleler eşliğinde kullanılabilir. Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? Ne kelimesi ne demek, TDK ya göre anlamı nedir sorularının cevabını arayanlar için bildiris.com doğru adres! Peki, ne kelimesi ne demek, TDK ye göre anlamı nedir? Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? Ne kelimesinin kökeni ne, ne kelimesinin kaç anlamı var? Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? İşte TDK bilgileri ile merak edilenler
Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? Açıklaması? :Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? Açıklama Bir Terim Kavram Ya Da Başka Dilsel Olgunun Daha İyi Anlaşılması İçin Yapılan Ek Bilgidir.Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? Söz Konusu Bilgi Açıklanacak Sözcükten Daha Uzun Olur Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? Açıklama İle İlgili Durumun Kanıtı Şu Şekilde Doğrulanabilir Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? Bir Sözlükteki Tanım İlgili Sözcük Yerine Kullanılabilirse, Bu Bir Açıklamadır. Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? Yani Aynı Bağlam İçinde Hem Sözcük Hem De Tanım Kullanılırsa Ve Anlamsal Açıdan Bir Sorun Oluşturmuyorsa Bu Bir Açıklamadır.
Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? Gerçek mi? :Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? ile ilgili Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? burada bulabilirsiniz. Detaylar için sitemizi geziniz Gerçek anlam Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? sözcüklerin birincil anlamı ile (varsa) bu anlamla doğrudan ilişkili olan anlamlarıdır. Gerçek anlam, temel anlam ile yan anlamların bileşkesidir. Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? Bir sözcüğün mecaz olmayan tüm anlamlarını kapsar.
Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? Hakkında? :Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? ile ilgili Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? burada bulabilirsiniz. Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? Detaylar için sitemizi geziniz Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? Bu sayfada Hakkında nedir Hakkında ne demek Hakkında ile ilgili sözler cümleler bulmaca kısaca Hakkında anlamı tanımı açılımı Hakkında hakkında bilgiler Kütle çekimsel dalga nedir?, Kütle çekimsel dalga anlamı nedir?, Kütle çekimsel dalga ne demektir? resimleri Hakkında sözleri yazıları kelimesinin sözlük anlamı nedir almanca ingilizce türkçe çevirisini bulabilirsiniz
Çamgiller, Aziz Edward, Trpinja, Yuja, Hear In The Now Frontier, The Fame, Ak Orda, Jonas Basanavičius, Suveyre, Sisseton, Ototylomys, Dijital dağıtım, Prenses Alice, Athlone Kontesi, 2023 Avrupa Oyunlarında breakdance, Sammy Mejia, Fahri Görgülü, 12. Akademi Ödülleri, Suriye ile ilgili Birleşmiş Milletler kararları listesi, Hadra, Tayland kadın millî voleybol takımı, Çevreli, Arguvan, Göreme Milli Parkı, Tepki, Muzyka czterech stron wschodu, Toms River, New Jersey, CF Gloria 1922 Bistriţa, İdil Ural Devleti, 2018 FIVB Voleybol Erkekler Uluslar Ligi, FIVB Voleybol Kadınlar Milletler Ligi, KXNG Crooked, Adrián Bone, NGC 261, Honghe Hani ve Yi Özerk İli, Mando, Amaranthus powellii, Billboard Japan Hot 100, Kolesterol, Marek Heinz, FIVB Voleybol Erkekler Milletler Ligi, Dinamik dizi, Bugatti Divo, Ensest yasağı, 1945 Türkiye nüfus sayımı, Cemal Gürsel, Thomas Robinson, Palais des Papes, Sessiz (albüm), Belediye Kütahyaspor, Geğarkunik İdari Bölgesi, 1632, Bölüm (iş), Pil tarihi, Mezozoik, Fran Zwitter, Entada, Çanakkale Savaşları Gelibolu Tarihî Alanındaki şehitlikler ve eserler listesi, Rudolph Marcus, Corleone, Microstigmata, Francesco Quinn, Polatlı Yüksek Hızlı Tren Garı, Morella, Diano Castello, 2018 FIVB Voleybol Kadınlar Uluslar Ligi, 2019 FIVB Voleybol Kadınlar Uluslar Ligi, 2021 FIVB Voleybol Kadınlar Uluslar Ligi, Kükürtlü, Aşkale, Begonia crispipila, Pantin, Arachnura, Belarus kadın millî voleybol takımı, Analamanga, Samarinda, Estonya kadın millî voleybol takımı, İsviçre kadın millî voleybol takımı, Rodrigo Lacerda Ramos, Nicomedia, Hayri Kozakçıoğlu, Karadağ kadın millî voleybol takımı, Büyükdere Caddesi, Flakpanzer 38(t), Messier 10, Çamgazi Barajı, Asya Voleybol Konfederasyonu, Glennis Grace, Avusturya kadın millî voleybol takımı, Köpek Kalbi, Danimarka kadın millî voleybol takımı, 1998 Türkiye Kupası Finali, Dermot Ahern, Gürcistan kadın millî voleybol takımı, Kuzey Makedonya kadın millî voleybol takımı, Yerleşim yeri, Portekiz kadın millî voleybol takımı, Slovakya kadın millî voleybol takımı, Rum Vadisi Koruma Alanı, Dan Savage, Slovenya kadın millî voleybol takımı, Oğuz dilleri, Henrik Larsson,
Tezkiyesi Bozuk Nedir?, Mete Koca Kimdir?, Abdullah Çakır Kimdir?, Zeki İsminin Anlamı Nedir?, Recep Bakırcı Kimdir?, Doğu Türkistan bayrağı Anlamı Nedir, Doğu Türkistan bayrağı Nasıl Oluştu, Doğu Türkistan bayrağı Tarihi, Doğu Türkistan bayrağı Renkleri, Doğu Türkistan bayrağı Tasarımı, Tezatlı Nedir?, Zekasal İsminin Anlamı Nedir?, Faik Deli Kimdir?, Zekâlı İsminin Anlamı Nedir?, Ferdaya Salmak Nedir?, Cevdet Akay Kimdir?, Zekâi İsminin Anlamı Nedir?, Teyelli Nedir?, Ferdası Nedir?, Zehirsiz İsminin Anlamı Nedir?, Ferasetsiz Nedir?, Tuncer Usta Kimdir?, Tevazulu Nedir?, Ferasetli Nedir?, Zehirli İsminin Anlamı Nedir?, Nesrin Arslan Kimdir?, Ferahlık Duymak Nedir?, Çağatay Atasay Kimdir?, Zehir Zıkkım İsminin Anlamı Nedir?, Alpaslan Türkkan Kimdir?, Zecrî İsminin Anlamı Nedir?, Adnan Sinan Çakıroğlu Kimdir?, Yrd Doç Dr Badegül Can Emir Kimdir? Yrd Doç Dr Badegül Can Emir Nereli Yrd Doç Dr Badegül Can Emir Kaç Yaşında?, Zebunküş İsminin Anlamı Nedir?, Aziz Cem Güner Kimdir?, Zebun İsminin Anlamı Nedir?, Ferah Tut Nedir?, Doğukan Ak Kimdir?, Zayi İsminin Anlamı Nedir?, Ferah Bulmak Nedir?, Doğan Avcı Kimdir?, Zayıf Sesli İsminin Anlamı Nedir?, Erol Bayram Kimdir?, Feragatli Nedir?, Tufan Yanar Kimdir?, Zayıf Nahif İsminin Anlamı Nedir?, Testereli Nedir?, Özgül Baydoğan Kimdir?, Feragat Sahibi Nedir?, Zayıf İsminin Anlamı Nedir?, Tespihsiz Nedir?, Naci Şanlıtürk Kimdir?, Zaviyevi İsminin Anlamı Nedir?, Ülkü Ayaydın Kimdir?, Tespihli Nedir?, Fer Almak Nedir?, Akadyana bayrağı Anlamı Nedir, Akadyana bayrağı Nasıl Oluştu, Akadyana bayrağı Tarihi, Akadyana bayrağı Renkleri, Akadyana bayrağı Tasarımı, Naile İşlek Kimdir?, Zavallı İsminin Anlamı Nedir?, Teslimiyetçi Nedir?, Zatî İsminin Anlamı Nedir?, Fenomenolojik Nedir?, Nizamettin Öztürk Kimdir?, Ahmet Yasin Şentürk Kimdir?, Fenomenal Nedir?, Zata Mahsus İsminin Anlamı Nedir?, Ejder Kaygusuz Kimdir?, Fenolojik Nedir?, Zaruri İsminin Anlamı Nedir?, Tesettürsüz Nedir?, Emrullah Türe Kimdir?, Zarsı İsminin Anlamı Nedir?, Tesettürlü Nedir?, Fenlenmek Nedir?, Elif Baysal Kimdir?, Zarplı İsminin Anlamı Nedir?, Fenik Nedir?, Mehmet Bağlar Kimdir?, Cumali İnce Kimdir?, Zarif İsminin Anlamı Nedir?, Fenersiz Yakalanmak Nedir?, Fevzi Fatih Oğuz Kimdir?, Zafer Bayrağı (Azerbaycan) Anlamı Nedir, Zafer Bayrağı (Azerbaycan) Nasıl Oluştu, Zafer Bayrağı (Azerbaycan) Tarihi, Zafer Bayrağı (Azerbaycan) Renkleri, Zafer Bayrağı (Azerbaycan) Tasarımı, Fenersiz Nedir?, Zararsız İsminin Anlamı Nedir?, Fenerli Nedir?, Zararlı İsminin Anlamı Nedir?, Hüseyin Çalişci Kimdir?, İrfan Karatutlu Kimdir?, Feneri Nerde Söndürdün Nedir?, Zarardîde İsminin Anlamı Nedir?, Terso Nedir?, Metin Bozkurt Kimdir?, Zarafetli İsminin Anlamı Nedir?, Savaş bayrağı Anlamı Nedir, Savaş bayrağı Nasıl Oluştu, Savaş bayrağı Tarihi, Savaş bayrağı Renkleri, Savaş bayrağı Tasarımı, Fener Çekmek Nedir?, Mustafa Çiftci Kimdir?, Zampara İsminin Anlamı Nedir?, Tersinir Nedir?, Gülfiraz Sağlık Kimdir?, Ters Türs Nedir?, Zamlı İsminin Anlamı Nedir?, Fenaya Çekmek Nedir?, Filiz Kılıç Kimdir?,